站长资源数据库
Redis中的数据过期策略详解
1、Redis中key的的过期时间
通过EXPIRE key seconds命令来设置数据的过期时间。返回1表明设置成功,返回0表明key不存在或者不能成功设置过期时间。在key上设置了过期时间后key将在指定的秒数后被自动删除。被指定了过期时间的key在Redis中被称为是不稳定的。
当key被DEL命令删除或者被SET、GETSET命令重置后与之关联的过期时间会被清除
127.0.0.1:6379> setex s 20 1 OK 127.0.0.1:6379> ttl s (integer) 17 127.0.0.1:6379> setex s 200 1 OK 127.0.0.1:6379> ttl s (integer) 195 127.0.0.1:6379> setrange s 3 100 (integer) 6 127.0.0.1:6379> ttl s (integer) 152 127.0.0.1:6379> get s "1\x00\x00100" 127.0.0.1:6379> ttl s (integer) 108 127.0.0.1:6379> getset s 200 "1\x00\x00100" 127.0.0.1:6379> get s "200" 127.0.0.1:6379> ttl s (integer) -1
使用PERSIST可以清除过期时间
127.0.0.1:6379> setex s 100 test OK 127.0.0.1:6379> get s "test" 127.0.0.1:6379> ttl s (integer) 94 127.0.0.1:6379> type s string 127.0.0.1:6379> strlen s (integer) 4 127.0.0.1:6379> persist s (integer) 1 127.0.0.1:6379> ttl s (integer) -1 127.0.0.1:6379> get s "test"
使用rename只是改了key值
127.0.0.1:6379> expire s 200 (integer) 1 127.0.0.1:6379> ttl s (integer) 198 127.0.0.1:6379> rename s ss OK 127.0.0.1:6379> ttl ss (integer) 187 127.0.0.1:6379> type ss string 127.0.0.1:6379> get ss "test"
说明:Redis2.6以后expire精度可以控制在0到1毫秒内,key的过期信息以绝对Unix时间戳的形式存储(Redis2.6之后以毫秒级别的精度存储),所以在多服务器同步的时候,一定要同步各个服务器的时间
2、Redis过期键删除策略
Redis key过期的方式有三种:
- 被动删除:当读/写一个已经过期的key时,会触发惰性删除策略,直接删除掉这个过期key
- 主动删除:由于惰性删除策略无法保证冷数据被及时删掉,所以Redis会定期主动淘汰一批已过期的key
- 当前已用内存超过maxmemory限定时,触发主动清理策略
被动删除
只有key被操作时(如GET),REDIS才会被动检查该key是否过期,如果过期则删除之并且返回NIL。
1、这种删除策略对CPU是友好的,删除操作只有在不得不的情况下才会进行,不会其他的expire key上浪费无谓的CPU时间。
2、但是这种策略对内存不友好,一个key已经过期,但是在它被操作之前不会被删除,仍然占据内存空间。如果有大量的过期键存在但是又很少被访问到,那会造成大量的内存空间浪费。expireIfNeeded(redisDb *db, robj *key)
函数位于src/db.c。
/*----------------------------------------------------------------------------- * Expires API *----------------------------------------------------------------------------*/ int removeExpire(redisDb *db, robj *key) { /* An expire may only be removed if there is a corresponding entry in the * main dict. Otherwise, the key will never be freed. */ redisAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL); return dictDelete(db->expires,key->ptr) == DICT_OK; } void setExpire(redisDb *db, robj *key, long long when) { dictEntry *kde, *de; /* Reuse the sds from the main dict in the expire dict */ kde = dictFind(db->dict,key->ptr); redisAssertWithInfo(NULL,key,kde != NULL); de = dictReplaceRaw(db->expires,dictGetKey(kde)); dictSetSignedIntegerVal(de,when); } /* Return the expire time of the specified key, or -1 if no expire * is associated with this key (i.e. the key is non volatile) */ long long getExpire(redisDb *db, robj *key) { dictEntry *de; /* No expire"expired",key,db->id); return dbDelete(db,key); } /*----------------------------------------------------------------------------- * Expires Commands *----------------------------------------------------------------------------*/ /* This is the generic command implementation for EXPIRE, PEXPIRE, EXPIREAT * and PEXPIREAT. Because the commad second argument may be relative or absolute * the "basetime" argument is used to signal what the base time is (either 0 * for *AT variants of the command, or the current time for relative expires). * * unit is either UNIT_SECONDS or UNIT_MILLISECONDS, and is only used for * the argv[2] parameter. The basetime is always specified in milliseconds. */ void expireGenericCommand(redisClient *c, long long basetime, int unit) { robj *key = c->argv[1], *param = c->argv[2]; long long when; /* unix time in milliseconds when the key will expire. */ if (getLongLongFromObjectOrReply(c, param, &when, NULL) != REDIS_OK) return; if (unit == UNIT_SECONDS) when *= 1000; when += basetime; /* No key, return zero. */ if (lookupKeyRead(c->db,key) == NULL) { addReply(c,shared.czero); return; } /* EXPIRE with negative TTL, or EXPIREAT with a timestamp into the past * should never be executed as a DEL when load the AOF or in the context * of a slave instance. * * Instead we take the other branch of the IF statement setting an expire * (possibly in the past) and wait for an explicit DEL from the master. */ if (when <= mstime() && !server.loading && !server.masterhost) { robj *aux; redisAssertWithInfo(c,key,dbDelete(c->db,key)); server.dirty++; /* Replicate/AOF this as an explicit DEL. */ aux = createStringObject("DEL",3); rewriteClientCommandVector(c,2,aux,key); decrRefCount(aux); signalModifiedKey(c->db,key); notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",key,c->db->id); addReply(c, shared.cone); return; } else { setExpire(c->db,key,when); addReply(c,shared.cone); signalModifiedKey(c->db,key); notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"expire",key,c->db->id); server.dirty++; return; } } void expireCommand(redisClient *c) { expireGenericCommand(c,mstime(),UNIT_SECONDS); } void expireatCommand(redisClient *c) { expireGenericCommand(c,0,UNIT_SECONDS); } void pexpireCommand(redisClient *c) { expireGenericCommand(c,mstime(),UNIT_MILLISECONDS); } void pexpireatCommand(redisClient *c) { expireGenericCommand(c,0,UNIT_MILLISECONDS); } void ttlGenericCommand(redisClient *c, int output_ms) { long long expire, ttl = -1; /* If the key does not exist at all, return -2 */ if (lookupKeyRead(c->db,c->argv[1]) == NULL) { addReplyLongLong(c,-2); return; } /* The key exists. Return -1 if it has no expire, or the actual * TTL value otherwise. */ expire = getExpire(c->db,c->argv[1]); if (expire != -1) { ttl = expire-mstime(); if (ttl < 0) ttl = 0; } if (ttl == -1) { addReplyLongLong(c,-1); } else { addReplyLongLong(c,output_ms "htmlcode">#define ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC 25 /* CPU max % for keys collection */ ... timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;hz调大将会提高Redis主动淘汰的频率,如果你的Redis存储中包含很多冷数据占用内存过大的话,可以考虑将这个值调大,但Redis作者建议这个值不要超过100。我们实际线上将这个值调大到100,观察到CPU会增加2%左右,但对冷数据的内存释放速度确实有明显的提高(通过观察keyspace个数和used_memory大小)。
可以看出timelimit和server.hz是一个倒数的关系,也就是说hz配置越大,timelimit就越小。换句话说是每秒钟期望的主动淘汰频率越高,则每次淘汰最长占用时间就越短。这里每秒钟的最长淘汰占用时间是固定的250ms(1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/100),而淘汰频率和每次淘汰的最长时间是通过hz参数控制的。
从以上的分析看,当redis中的过期key比率没有超过25%之前,提高hz可以明显提高扫描key的最小个数。假设hz为10,则一秒内最少扫描200个key(一秒调用10次*每次最少随机取出20个key),如果hz改为100,则一秒内最少扫描2000个key;另一方面,如果过期key比率超过25%,则扫描key的个数无上限,但是cpu时间每秒钟最多占用250ms。
当REDIS运行在主从模式时,只有主结点才会执行上述这两种过期删除策略,然后把删除操作”del key”同步到从结点。
maxmemory
当前已用内存超过maxmemory限定时,触发主动清理策略
- volatile-lru:只对设置了过期时间的key进行LRU(默认值)
- allkeys-lru : 删除lru算法的key
- volatile-random:随机删除即将过期key
- allkeys-random:随机删除
- volatile-ttl : 删除即将过期的
- noeviction : 永不过期,返回错误当mem_used内存已经超过maxmemory的设定,对于所有的读写请求,都会触发redis.c/freeMemoryIfNeeded(void)函数以清理超出的内存。注意这个清理过程是阻塞的,直到清理出足够的内存空间。所以如果在达到maxmemory并且调用方还在不断写入的情况下,可能会反复触发主动清理策略,导致请求会有一定的延迟。
当mem_used内存已经超过maxmemory的设定,对于所有的读写请求,都会触发redis.c/freeMemoryIfNeeded(void)
函数以清理超出的内存。注意这个清理过程是阻塞的,直到清理出足够的内存空间。所以如果在达到maxmemory并且调用方还在不断写入的情况下,可能会反复触发主动清理策略,导致请求会有一定的延迟。
清理时会根据用户配置的maxmemory-policy来做适当的清理(一般是LRU或TTL),这里的LRU或TTL策略并不是针对redis的所有key,而是以配置文件中的maxmemory-samples个key作为样本池进行抽样清理。
maxmemory-samples在redis-3.0.0中的默认配置为5,如果增加,会提高LRU或TTL的精准度,redis作者测试的结果是当这个配置为10时已经非常接近全量LRU的精准度了,并且增加maxmemory-samples会导致在主动清理时消耗更多的CPU时间,建议:
- 尽量不要触发maxmemory,最好在mem_used内存占用达到maxmemory的一定比例后,需要考虑调大hz以加快淘汰,或者进行集群扩容。
- 如果能够控制住内存,则可以不用修改maxmemory-samples配置;如果Redis本身就作为LRU cache服务(这种服务一般长时间处于maxmemory状态,由Redis自动做LRU淘汰),可以适当调大maxmemory-samples。
以下是上文中提到的配置参数的说明
# Redis calls an internal function to perform many background tasks, like # closing connections of clients in timeout, purging expired keys that are # never requested, and so forth. # # Not all tasks are performed with the same frequency, but Redis checks for # tasks to perform according to the specified "hz" value. # # By default "hz" is set to 10. Raising the value will use more CPU when # Redis is idle, but at the same time will make Redis more responsive when # there are many keys expiring at the same time, and timeouts may be # handled with more precision. # # The range is between 1 and 500, however a value over 100 is usually not # a good idea. Most users should use the default of 10 and raise this up to # 100 only in environments where very low latency is required. hz 10 # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> remove the key with an expire set using an LRU algorithm # allkeys-lru -> remove any key according to the LRU algorithm # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # # Note: with any of the above policies, Redis will return an error on write # operations, when there are no suitable keys for eviction. # # At the date of writing these commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated # algorithms (in order to save memory), so you can tune it for speed or # accuracy. For default Redis will check five keys and pick the one that was # used less recently, you can change the sample size using the following # configuration directive. # # The default of 5 produces good enough results. 10 Approximates very closely # true LRU but costs a bit more CPU. 3 is very fast but not very accurate. # maxmemory-samples 5
Replication link和AOF文件中的过期处理
为了获得正确的行为而不至于导致一致性问题,当一个key过期时DEL操作将被记录在AOF文件并传递到所有相关的slave。也即过期删除操作统一在master实例中进行并向下传递,而不是各salve各自掌控。这样一来便不会出现数据不一致的情形。当slave连接到master后并不能立即清理已过期的key(需要等待由master传递过来的DEL操作),slave仍需对数据集中的过期状态进行管理维护以便于在slave被提升为master会能像master一样独立的进行过期处理。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。